CWN-1 functions with DSH-2 to regulate C. elegans asymmetric neuroblast division in a beta-catenin independent Wnt pathway.

نویسندگان

  • Kyla Hingwing
  • Sam Lee
  • Lani Nykilchuk
  • Tim Walston
  • Jeff Hardin
  • Nancy Hawkins
چکیده

In Caenorhabditis elegans, Wnt signaling regulates many asymmetric cell divisions. During embryogenesis, the C. elegans Dishevelled (Dsh) homolog, DSH-2, regulates asymmetric neuroblast division of the ABpl/rpppa blast cell. Dsh is a key intracellular component of both beta-catenin dependent and beta-catenin independent Wnt pathways. In C. elegans, most of the well-characterized asymmetric cell divisions regulated by Wnts are dependent on beta-catenin. In the ABpl/rpppa neuroblast division, however, we determined that DSH-2 regulates cell polarity through a beta-catenin independent Wnt pathway. We also established that the C. elegans Wnt homolog, cwn-1, functions to regulate asymmetric division of the ABpl/rpppa blast cell. Our results indicated that cwn-1 does not act alone in this process, and it functions with another redundant ligand that appears not to be a Wnt. Finally, we show widespread requirements for DSH-2 during embryogenesis in the generation of many other neurons. In particular, DSH-2 function is necessary for the correct production of the embryonic ventral cord motor neurons. This study demonstrates a role for DSH-2 and Wnt signaling in neuronal specification during C. elegans embryogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CWN-1 functions with DSH-2 to regulate C. elegans asymmetric neuroblast division in a β-catenin independent Wnt pathway

Article history: In Caenorhabditis elegans, W Received for publication 28 July 2008 Revised 14 January 2009 Accepted 17 January 2009 Available online 29 January 2009

متن کامل

The N- or C-terminal domains of DSH-2 can activate the C. elegans Wnt/beta-catenin asymmetry pathway.

Dishevelleds are modular proteins that lie at the crossroads of divergent Wnt signaling pathways. The DIX domain of dishevelleds modulates a beta-catenin destruction complex, and thereby mediates cell fate decisions through differential activation of Tcf transcription factors. The DEP domain of dishevelleds mediates planar polarity of cells within a sheet through regulation of actin modulators....

متن کامل

Robo and Ror function in a common receptor complex to regulate Wnt-mediated neurite outgrowth in Caenorhabditis elegans

Growing axons are exposed to various guidance cues en route to their targets, but the mechanisms that govern the response of growth cones to combinations of signals remain largely elusive. Here, we found that the sole Robo receptor, SAX-3, in Caenorhabditis elegans functions as a coreceptor for Wnt/CWN-2 molecules. SAX-3 binds to Wnt/CWN-2 and facilitates the membrane recruitment of CWN-2. SAX-...

متن کامل

The long and the short of Wnt signaling in C. elegans.

The simplicity of C. elegans makes it an outstanding system to study the role of Wnt signaling in development. Many asymmetric cell divisions in C. elegans require the Wnt/beta-catenin asymmetry pathway. Recent studies confirm that SYS-1 is a structurally and functionally divergent beta-catenin, and implicate lipids and retrograde trafficking in maintenance of WRM-1/beta-catenin asymmetry. Wnts...

متن کامل

A Wnt-Frz/Ror-Dsh Pathway Regulates Neurite Outgrowth in Caenorhabditis elegans

One of the challenges to understand the organization of the nervous system has been to determine how axon guidance molecules govern axon outgrowth. Through an unbiased genetic screen, we identified a conserved Wnt pathway which is crucial for anterior-posterior (A/P) outgrowth of neurites from RME head motor neurons in Caenorhabditis elegans. The pathway is composed of the Wnt ligand CWN-2, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental biology

دوره 328 2  شماره 

صفحات  -

تاریخ انتشار 2009